Mechanics of generating friction during locomotion on rough and smooth arboreal trackways.
نویسنده
چکیده
Traveling on arboreal substrates is common among most small mammals living anywhere vegetation grows. Because arboreal supports vary considerably in surface texture, animals must be able to adjust their locomotor biomechanics to remain stable on such supports. I examined how gray short-tailed opossums (Monodelphis domestica), which are generalized marsupials living on or near the ground, adjust to travel on rough and smooth 2 cm-diameter arboreal trackways. Limb contact position was determined via high-speed videography, and substrate reaction force was measured by an instrumented section of each branch trackway. Normal and shear forces were calculated from substrate reaction force and limb contact position around the branch trackways. Normal force is greater in forelimbs, probably because of the forelimb's greater weight support role. Shear force was identical between limb pairs, most likely because of interactions between vertical force, limb placement, mediolateral force, and torque. The opossums adjusted to the smooth trackway mainly by reducing speed, changing footfall patterns and increasing normal force. I predict that arboreal specialists will show less change in performance between rough and smooth arboreal trackways because of their greater ability to grasp or maintain contact with arboreal substrates.
منابع مشابه
Tarantulas (Araneae: Theraphosidae) use different adhesive pads complementarily during climbing on smooth surfaces: experimental approach in eight arboreal and burrower species
Tarantulas are large spiders with adhesive setae on their legs, which enable them to climb on smooth vertical surfaces. The mechanism proposed to explain adhesion in tarantulas is anisotropic friction, where friction is higher when the leg pushes than when it pulls. However, previous studies and measurements of adhesion in theraphosids were performed using dead specimens. To test their ability ...
متن کاملA Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملThe kinematic consequences of locomotion on sloped arboreal substrates in a generalized (Rattus norvegicus) and a specialized (Sciurus vulgaris) rodent.
Small mammals must negotiate terrains that consist of numerous substrates that vary in diameter, surface structure, rigidity and orientation. Most studies on mammals have focused on the effects of substrate diameter during horizontal locomotion, especially in small- to medium-sized primates and marsupials. Locomotion across sloped arboreal substrates, however, is poorly understood. Here, in ord...
متن کاملEffect of Moisture Content on Shear Strength of Offshore Clay Interface Steel Surface
This paper investigates the effect of moisture content on interface shear strength between offshore clay and steel plate. Although, sensitive and high plasticity offshore clay deposits are widely distributed in Malaysia and many other countries in the world, and steel is a vital construction material for many structures, research works on interaction between offshore clay and steel surface are ...
متن کاملTorsional locomotion
One edge of an elastic rod is inserted into a friction-less and fitting socket head, whereas the other edge is subjected to a torque, generating a uniform twisting moment. It is theoretically shown and experimentally proved that, although perfectly smooth, the constraint realizes an expulsive axial force on the elastic rod, which amount is independent of the shape of the socket head. The axial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 8 شماره
صفحات -
تاریخ انتشار 2009